Increased dermal collagen bundle alignment in systemic sclerosis is associated with a cell migration signature and role of Arhgdib in directed fibroblast migration on aligned ECMs
نویسندگان
چکیده
Systemic sclerosis (SSc) is a devastating disease affecting the skin and internal organs. Dermal fibrosis manifests early and Modified Rodnan Skin Scores (MRSS) correlate with disease progression. Transcriptomics of SSc skin biopsies suggest the role of the in vivo microenvironment in maintaining the pathological myofibroblasts. Therefore, defining the structural changes in dermal collagen in SSc patients could inform our understanding of fibrosis pathogenesis. Here, we report a method for quantitative whole-slide image analysis of dermal collagen from SSc patients, and our findings of more aligned dermal collagen bundles in diffuse cutaneous SSc (dcSSc) patients. Using the bleomycin-induced mouse model of SSc, we identified a distinct high dermal collagen bundle alignment gene signature, characterized by a concerted upregulation in cell migration, adhesion, and guidance pathways, and downregulation of spindle, replication, and cytokinesis pathways. Furthermore, increased bundle alignment induced a cell migration gene signature in fibroblasts in vitro, and these cells demonstrated increased directed migration on aligned ECM fibers that is dependent on expression of Arhgdib (Rho GDP-dissociation inhibitor 2). Our results indicate that increased cell migration is a cellular response to the increased collagen bundle alignment featured in fibrotic skin. Moreover, many of the cell migration genes identified in our study are shared with human SSc skin and may be new targets for therapeutic intervention.
منابع مشابه
The Role of Human Adult Peripheral and Umbilical Cord Blood Platelet-Rich Plasma on Proliferation and Migration of Human Skin Fibroblasts
BACKGROUND Wound healing is a complex and dynamic process following damage in tissue structures. Due to extensive skin damage caused by burn injuries, this study determined the role of human adult peripheral and umbilical cord blood platelet-rich plasma on proliferation and migration in human skin fibroblasts. METHODS Platelet-rich plasma (5, 10, 15, 20 and 50% PRP) from human umbilica...
متن کاملComparison of a Suggested Model of Fibrosis in Human Dermal Fibroblasts by Serum from Systemic Sclerosis Patients with Transforming Growth Factor β Induced in vitro Model
Systemic sclerosis (SSc) is a chronic autoimmune disease, featuring fibrosis in multiple organs. The serum from SSc patients contain inflammatory mediators, contributing to SSc pathogenesis and could be used to develop cell culture models. Here, we compared the fibrotic effects of serum samples from SSc patients with TGFβ1 on human dermal fibroblasts (HDFs). HDF cells were cultured in four diff...
متن کاملEffects of 2D and 3D Collagen Fiber Orientation on Ligament Fibroblast Migration
Introduction Ligament fibroblasts reside in a highly fibrous and anisotropic microenvironment. The type I collagen that made up the majority of the ligament extracellular matrix are organized into fiber bundles and crimp structures. This highly aligned arrangement has been shown to modulate fibroblast morphology, collagen expression and mechanotransduction [1]. In addition, fibroblasts exhibit ...
متن کاملTanshinone IIA attenuates interleukin-17A-induced systemic sclerosis patient-derived dermal vascular smooth muscle cell activation via inhibition of the extracellular signal-regulated kinase signaling pathway
OBJECTIVE Salvia miltiorrhiza has long been used to treat systemic sclerosis. Tanshinone IIA, one of the phytochemicals derived from the roots of Salvia miltiorrhiza, exhibits multiple biological activities. The present study aimed to investigate whether tanshinone IIA has an effect on the interleukin-17A-induced functional activation of systemic sclerosis patient-derived dermal vascular smooth...
متن کاملMolecular-scale topographic cues induce the orientation and directional movement of fibroblasts on two-dimensional collagen surfaces.
Collagen fibres within the extracellular matrix lend tensile strength to tissues and form a functional scaffold for cells. Cells can move directionally along the axis of fibrous structures, in a process important in wound healing and cell migration. The precise nature of the structural cues within the collagen fibrils that can direct cell movement are not known. We have investigated the structu...
متن کامل